HEARTwise ML

Presented by Lars Halvorsen
Freija Descamps and Hanne Derycke for the HEARTwise team
2025-11-05

Hospital and Home Early Warning

Al-Refined Triage with Wearables and Instruments for Smart Evaluation

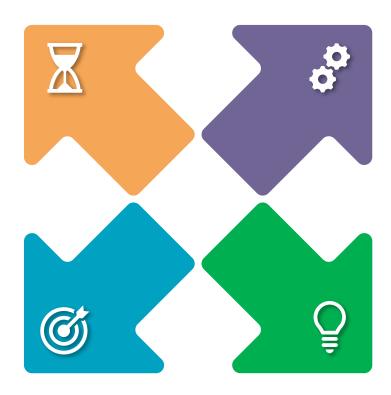
Introduction - HEARTwise

- Belgian Project approved within FOD innovation initiatives
- Duration: July 2024 December 2025
- Collaboration between 4 Belgian hospitals:
 - Jan Yperman Hospital: coordinating hospital
 - University Hospital Antwerp
 - AZ West Veurne
 - Sint-Andries Tielt

Project scope: Improving the Early Warning Score (EWS) process

• EWS: A standardized method used in healthcare to assess a patient's clinical condition

Projectscope: Improving the Early Warning Score (EWS) process


· How?

Automatic

EWS in the hospital: Increase frequency Automtic/semi-continuous Mesurement via WEARABLES

Visual

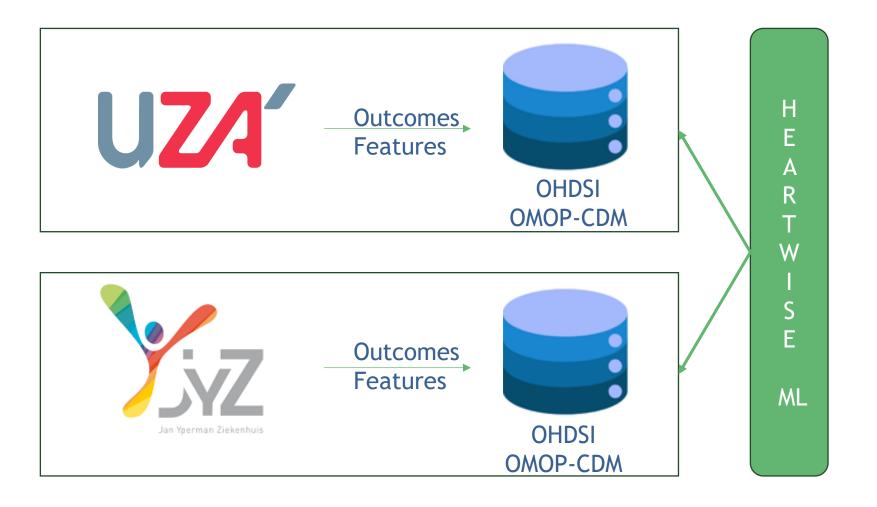
Better visualization of EWS data via dashboard

Telemonitoring

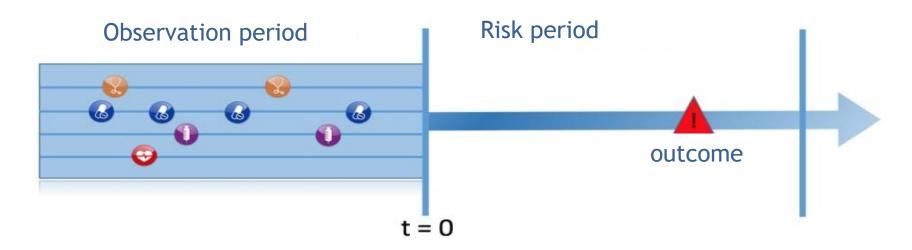
EWS care pathway in the home setting:
Patient goes home with wearables and
is monitored at home for 10 days
Follow-up via patient platform/application
and dashboard

Smarter

Developing an ML model to predict patient condition deterioration



HEARTwise ML


 Leverage OMOP to develop ML framework that can be used to train models at both hospitals

Develop one framework that can be deployed against any OMOP-CDM instance

The challenge of predictive models

- Can we, using available clinical observations, predict an outcome at t=0 (index date) within a defined risk period?
- Target cohort: Patients with at least one visit and more than one NEWS score, aged over 18 years. Pediatric and pregnant patients are excluded. NEWS data collected after April 1, 2021.
- Outcome cohort: Patients experiencing deterioration (various definitions possible).
- Risk period: For example, the next 4, 8, or 12 hours.
- Models: Regression and classification based on age, gender, NEWS, comorbidities, etc.

Regression

Classification

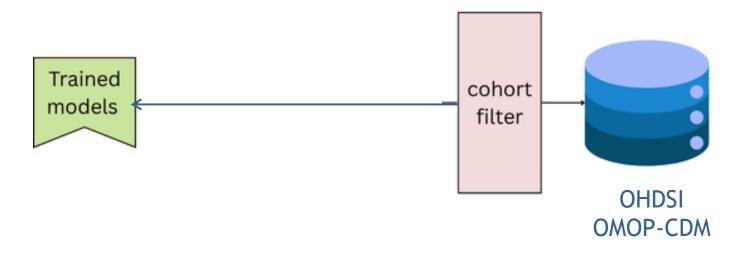
 Goal: Predicting a continuous value over time.

• Goal: Predict whether a patient will fall to a risk category within 4, 8,

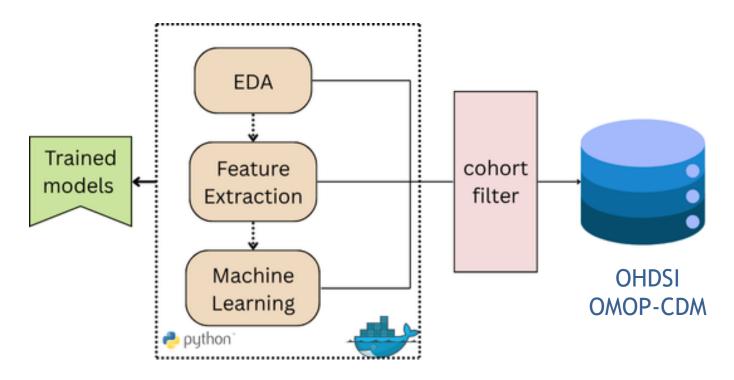
feature1

rtain NEWS 4, 8, or 12 hours.

4, 0, 01 12 110u13.


HEARTwise ML framework

 Leverage OMOP to develop ML framework that can be used to train models at both hospitals



HEARTwise ML framework

HEARTwise ML framework

Modular framework with three main components: Exploratory data analysis, Feature extraction, Machine learning (training)

- Each component can be executed independently
- Containerized and version control applied
- Data analysts can add new features and models

Development of HEARTwise Machine Learning framework to predict patient deterioration using existing OMOP CDM NEWS variables

Three-phase approach to design and develop the HW ML models

Background: The data track of the Belgian FOD innovation project HEARTwise is a collaboration between Jan Xperman Ziekenhuis (IVZ), Universitäir Ziekenhuis Antwerpen (UZA), and edenceHealth. It focuses on the development of a scalable and flexible ML pipeline to predict the deterioration of a patient's health status. The models will be trained using historical data in existing OMOP-CDM databases, primarilar Warning Score (NEWS) variables. NEWS is an early warning system used to assets a p facilitating early detection and response to clinical deterioration in adult patients.

Methods: The three-phase approach to the ML framework (Figure 1) is designed with a finallowing for fast technical iterations and extensibility for figure enhancements (e.g., additional iterations and extensibility for figure enhancements (e.g., additional iterations and extensibility for figure enhancements).

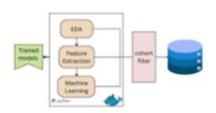


Figure 1: The workflow of the framework (left) and the Gree-phased approach of the project (righ

Results: The same patient selection criteria are applied to the JYZ and UZA datasets to compare overall distribution during Exploratory Data Analysis (EDA). Due to differences in patient populations and the hospitals' nature (regional vs. university), the patient characteristics are expected to differ. An example comparison is shown in Figure 2.

Insights from EDA have helped to assess data quality of NEWS variables and to inform the initial cohort selection:

- Patients with at least one visit with more than one NEWS above 18 years of age
- 2. Exclusion of pediatric and pregnant patients
- 3. NEWS data collected after April 1, 2021

sometimed count of NEWS occurrences ward on the excluded as the calculation of no.

itals, categorized by gender (Ma

Phase: E

HEARTwise poster at the OHDSI Europe 2025 symposium

Exploring the data and technical proof-of-concept (Phase:1)

EDA

......

......

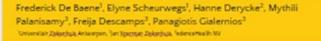
 Prototype ML pipeline with Linear regression model (age, gender, NEWS)

Enrichment of models and features

(Phase: 2)

Robust pipeline for new feature inclusion

- Advanced machine learning models
- · Assessments based on common metrics

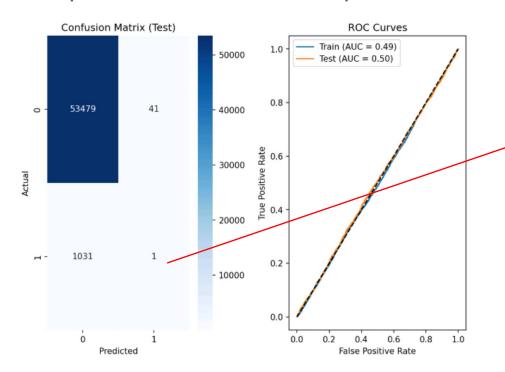

Applicability in a real-world context

(Phase: 3)

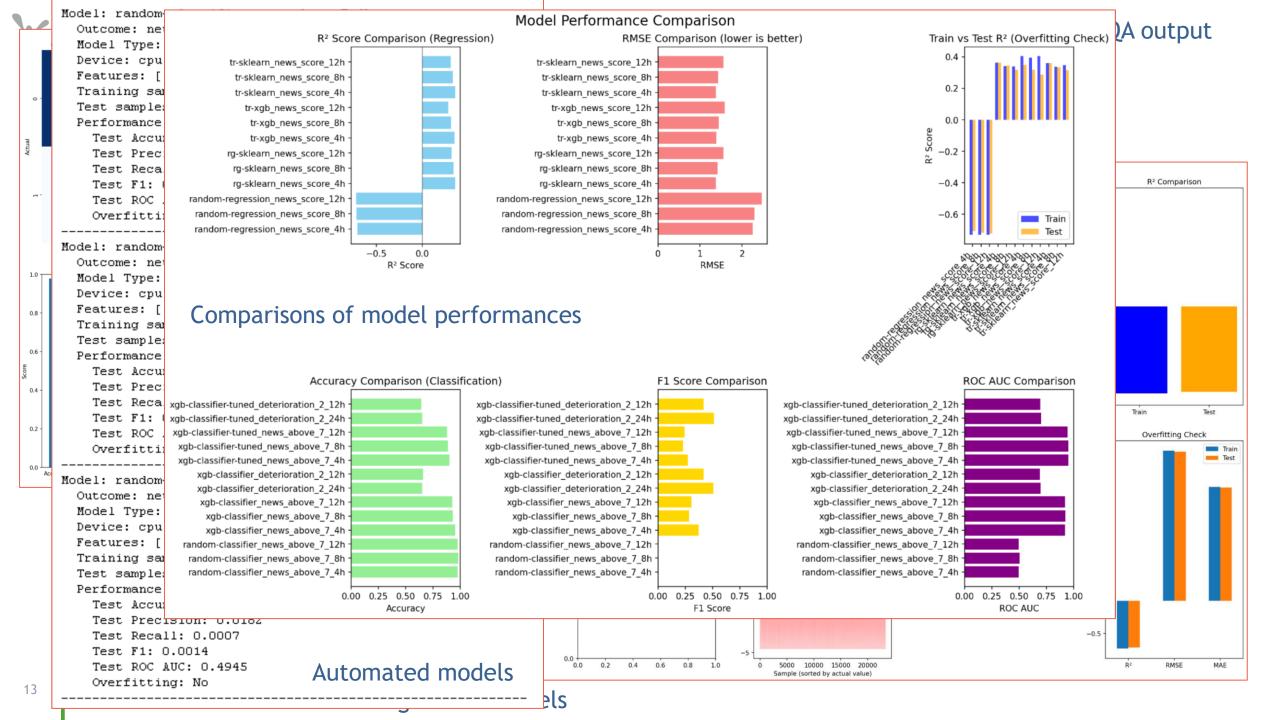
- Refinement of models
- Incorporating explainability techniques
- Investigating next step to develop scalable and production ready models

Conclusion: As a summary, initial ML model is prepared for testing, and the deve

framework is in progress. The framework has a modular design, which decouples feature extraction and engineering from ML model training, enhancing adaptability and enabling support for diverse data models beyond OMOP CDM.

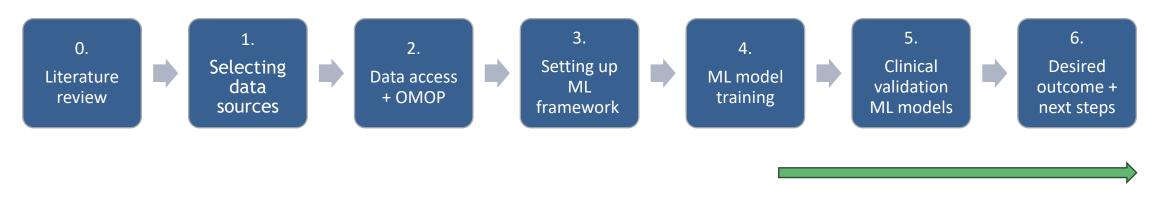


Example: predicting patient deterioration


Developing a flexible framework:

- Run multiple models on multiple outcomes and feature sets.
- Compare model performance.
- Execute a QA suite after each training round.

Examples of automated QA output for a random classifier:



In the test set: the random model correctly predicted the >7 NEWS within 4 hours outcome only once.

Current status ...

We are here: iterating and model explainability/validation

... and next steps

- Validation and explainability: workshop with clinicians
- Investigation and reporting on path to production/useage
- Dissimination and onboarding

Thank you!

Heartwise projectteam JYZ:

Caroline.Gheysen@yperman.net
Birgit.Castelein@yperman.net
Lies.Pauwels@yperman.net
Hanne.Derycke@yperman.net

edenceHealth:

Freija.descamps@edence.health